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Abstract
A general procedure to get the explicit solution of the equations of motion
for N-body classical Hamiltonian systems equipped with coalgebra symmetry
is introduced by defining a set of appropriate collective variables which are
based on the iterations of the coproduct map on the generators of the algebra.
In this way several examples of N-body dynamical systems obtained from
q-Poisson algebras are explicitly solved: the q-deformed version of the sl(2)

Calogero–Gaudin (qCG) system, a q-Poincaré Gaudin system and a system of
Ruijsenaars type arising from the same (non-coboundary) q-deformation of the
(1 + 1) Poincaré algebra. While the complete integrability of all these systems
was already well known, being in fact encoded in their construction, no explicit
solution was available until now. In particular, it turns out that there exists an
open subset of the whole phase space where the orbits of the qCG system are
periodic with the same period. Also, a unified interpretation of all these systems
as different Poisson–Lie dynamics on the same three-dimensional solvable Lie
group is given.

PACS numbers: 02.20.Uw, 02.30.Ik, 45.50.Jf

1. Introduction

The coalgebra approach [1, 2], and more recently its comodule algebra generalization [5]
have been proved to be quite effective methods for constructing both classical and quantum
Hamiltonian systems with a large family of commuting integrals of the motion. In some
important cases (e.g. for rank 1 Lie algebras and their q-analogues) the coalgebra method
leads to the proof of the complete integrability and even of the ‘super-integrability’ [6] of
such kind of systems. Moreover, in the quantum mechanical case both non-deformed and
q-deformed systems can be handled and explicitly solved on the same footing [7, 8].
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Surprisingly enough, such an explicit solution looked difficult to obtain at the classical
(Poisson) level, inasmuch as some traditional ingredients of classical integrability (such as
the Lax representation) were missing for all these systems. This issue has been recently
addressed in [9], where some steps towards the solution of the q-deformed version of the sl(2)

Calogero–Gaudin (qCG) system were accomplished.
In this paper we go ahead along the lines introduced in [9] and we present a general

approach to the explicit solution of N-body classical Hamiltonian systems with coalgebra
symmetry. This is achieved in the next section by using the coalgebra structure in order to
define a set of collective variables (the so-called ‘cluster’ variables) whose equations of motion
can be first separated by making use of the integrals for the system and then solved. Essentially,
the coalgebra symmetry implies a kind of self-similarity of the dynamical equations for these
cluster variables, and the N = 2 case turns out to be the essential cornerstone in order to solve
the full N-body dynamics.

This general procedure is applied to several coalgebra systems in section 3. There we
exhibit the complete solution of the classical equations of motion for the qCG system, which
has the N-body Casimir function as the Hamiltonian, unveiling the deep connection between
non-deformed and q-deformed systems. Afterwards, two more systems defined on a non-
coboundary q-deformation of the (1 + 1) Poisson Poincaré algebra are explicitly solved: the
first is a q-Poincaré analogue of the CG system and the second is the Ruijsennars–Schneider-
like system introduced in [2].

Finally, section 4 presents a unified interpretation of all the previous systems as
different cases of dual Poisson–Lie (PL) dynamics on N copies of the three-dimensional
solvable Lie group Gz generated by two translations and one dilation. From this point of
view the coproduct map (which is formally the same for all the systems here considered) is just
the Lie group multiplication of Gz, and the mth cluster variables are essentially the entries of
the matrix representation of the product of m different Gz group elements. Therefore, the qCG
system and the two q-Poincaré systems here solved are just two particular cases among the
set of all dynamical systems defined by the Poisson-Lie structures on Gz. All such systems
are, by construction, compatible with the Gz group multiplication but exhibit quite different
dynamical features, as will be shown through the examples here introduced.

2. Coalgebras and cluster dynamics

We recall from [2] that the following general result can be proved:
Let (A,�(2)) be a (Poisson) coalgebra with generators Xk (k = 1, . . . , l) and with

Casimirs Ci (i = 1, . . . , r). Then, the mth coproducts of the Casimirs (Poisson) commute
among themselves and with the N th coproducts of the generators of A:

{�(m)(Ci),�
(n)(Cj )] = 0 m, n = 1, . . . , N ∀i, j

{�(m)(Ci),�
(N)(Xk)] = 0 m = 1, . . . , N ∀k ∀i.

(1)

Here the symbol {·, ·] simultaneously denotes both the commutator (for quantum systems
where the algebra of observables A is non-commutative) and its Poisson analogue for classical
mechanical systems. Note that with this notation the �(1) coproduct is just the identity
map. Hence, for rank r = 1 coalgebras (and their Poisson analogues), we can consider as a
Hamiltonian any (smooth) function H of the three generators of the algebra:

H = H(X1, X2, X3) (2)
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and the complete integrability is thus established for the Hamiltonian H(N) defined as the Nth
coproduct of H:

H(N) = H(�(N)(X1),�
(N)(X2),�

(N)(X3)). (3)

Note that the Casimir C is just a particular function of the generators, and we could take
H ≡ C as a particular type of system (the so-called Gaudin-type Hamiltonians).

As extensively explained in [2], the proof of the above-mentioned statement relies on the
fact that the coproduct �(2) is a coassociative homomorphism: this means that there exist two
equivalent ways to define the third-order coproduct map, namely

�(3) := (id ⊗ �(2)) ◦ �(2) = (�(2) ⊗ id) ◦ �(2) (4)

and, in general, (N − 1) equivalent definitions of the Nth-order coproduct are possible:

�(N) := (�(m) ⊗ �(N−m)) ◦ �(2) m = 1, . . . , N − 1. (5)

This property holds for the Poisson case as well as in the quantum context, both in the non-
deformed and in the q-deformed cases, and it underlies the superintegrability properties of the
dynamical systems with coalgebra symmetry [6, 10].

In this paper we address the problem of the explicit solution of the classical dynamics
of such N-body Hamiltonian systems. For this purpose, the choice of an appropriate set of
dynamical variables will be essential. In this respect, we can rewrite expression (5) by using
Sweedler’s notation [11] in which the coproduct �(2) of an arbitrary element Y of the algebra
A (with arbitrary rank r) is given as the linear combination

�(2)(Y ) =
∑

α

Y1α ⊗ Y2α (6)

where Y1α and Y2α will be certain functions that live on two different copies of the algebra A:

Y1α = X1α(X1, . . . , Xl) Y2α = X2α(X1, . . . , Xl). (7)

From (5) we immediately get that, in this notation, the Nth coproduct of Y reads

�(N)(Y ) :=
∑

α

�(m)(Y1α) ⊗ �(N−m)(Y2α) m = 1, . . . , N − 1 (8)

and since any �(p) map is an algebra homomorphism, we can write

�(N)(Y ) :=
∑

α

Y1α(�(m)(X1), . . . ,�
(m)(Xl)) ⊗ Y2α(�(N−m)(X1), . . . ,�

(N−m)(Xl)) (9)

where m = 1, . . . , N − 1.
Expression (9) leads in a natural way to the definition of the following set of 2l(N − 1)

collective ‘cluster’ variables:

X
(m)
k := �(m)(Xk) X

(N−m)
k := �(N−m)(Xk) (10)

where k = 1, . . . , l and m = 1, . . . , N − 1. With them (9) is rewritten as

�(N)(Y ) :=
∑

α

Y1α

(
X

(m)
1 , . . . , X

(m)
l

) ⊗ Y2α

(
X

(N−m)
1 , . . . , X

(N−m)
l

)
(11)

for any fixed value of m. We stress that the variables X
(N−m)
k live on the (N −m) tensor copies

of A which are located starting from the right of the full chain of N copies of A:
m︷ ︸︸ ︷

A ⊗ A ⊗ · · · ⊗ A ⊗
N−m︷ ︸︸ ︷

A ⊗ · · · ⊗ A ⊗ A .

Therefore, {
X

(m)
k , X(N−m)

p

}
= 0 ∀ k, p. (12)
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Moreover, since the coproduct is always a Poisson algebra homomorphism, the set of variables{
X

(m)
1 , . . . , X

(m)
l

}
reproduces again the Poisson algebra A and the same is true for the

complementary set
{
X

(N−m)
1 , . . . , X

(N−m)
l

}
. In this notation the mth coproducts of Casimirs,

which are constants of motion for H(N), are written as

C(m) = �(m)(C) = C
(
X

(m)
1 , . . . , X

(m)
l

)
. (13)

By construction, there also exists a complementary set of integrals in involution defined by

C(N−m) = �(N−m)(C) = C
(
X

(N−m)
1 , . . . , X

(N−m)
l

)
. (14)

These additional integrals explicitly show the intrinsic superintegrability properties of
coalgebra symmetric systems [6, 10].

Now, the Hamiltonian H(N) is just a particular case of (9), and we can write it in (N − 1)

equivalent ways labelled by m:

H(N) = H
(
X

(m)
1 , . . . , X

(m)
l ;X

(N−m)
1 , . . . , X

(N−m)
l

)
m = 1, . . . , N − 1. (15)

From this perspective it is clear that the dynamics of the system will be explicitly known if we
are able to solve the evolution equations for the cluster variables X

(m)
k , which are (N − 1) sets

of l nonlinear coupled first-order ODEs

Ẋ
(m)
k = {

X
(m)
k ,H (N)

} = fk

(
X

(m)
1 , . . . , X

(m)
l ;X

(N−m)
1 , . . . , X

(N−m)
l

)
(16)

where, in turn, the complementary cluster variables X
(N−m)
k fulfil the equations

Ẋ
(N−m)
k = {

X
(N−m)
k ,H (N)

} = gk

(
X

(m)
1 , . . . , X

(m)
l ;X

(N−m)
1 , . . . , X

(N−m)
l

)
. (17)

As a final step, we will also have to solve the l coupled equations that provide the dynamics
of the Nth coproducts of the generators:

Ẋ
(N)
k = {

X
(N)
k ,H (N)

} = hk

(
X

(N)
1 , . . . , X

(N)
l

)
. (18)

Note that the dynamics of the latter N-body collective cluster variables turns out to be different
from any other lower mth dimensional m < N set of cluster variables.

Despite the apparent complexity of the problem, we stress that all the (N − 1) sets of
equations (16) are formally identical for any m = 1, . . . , N − 1, since the functions fk (and
gk) do not depend on m (this follows from the fact that the coproduct is a homomorphism).
As a consequence, the dynamics of the collective cluster variables is the same whatever the
number m of degrees of freedom of the cluster. This ‘self-similar’ dynamical behaviour turns
out to be an absolutely general feature of Poisson coalgebras and holds for both non-deformed
and deformed coalgebra symmetric systems. In the latter case the cluster structure of the
dynamics is preserved by the q-deformation, but the (always long-range) interactions coming
from the q-deformation implies a more involved dynamics.

As we shall see in the following sections, the strategy followed in order to solve the system
(16) will be to eliminate the complementary variables X

(N−m)
k by making use of the constants

of motion given by the coalgebra symmetry (therefore, without working out the explicit
solution for (17)). In particular, a distinguished set of dynamical systems appears when the
Hamiltonian function H(N) is just the Nth Casimir C(N) (the so-called Gaudin Hamiltonians).
In this particular case, since the Poisson brackets (18) vanish, the Nth coproducts of the
generators X

(N)
k give a set of l constants of motion that we shall call δk . Moreover, the

expressions of the Nth coproducts X
(N)
k obtained by using (9) give rise to l different algebraic

equations that, for a given m, involve both the X
(m)
k and the X

(N−m)
k variables. When the latter

are eliminated from them by using such constants, the system (16) is transformed into

Ẋ
(m)
k = {

X
(m)
k ,H (N)

} = f̃ k

(
X

(m)
1 , . . . , X

(m)
l ; δ1, . . . , δl

)
(19)
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which represents m copies of the same one-body dynamics in an ‘external’ field (parametrized
by δ1, . . . , δl) and thus can be simultaneously solved for any value of m. In case we deal with
more general Hamiltonians different from the Nth Casimir, the lower dimensional ‘cluster
Casimirs’ C(m) and C(N−m) will provide alternative integrals that can be used in order to
eliminate the X

(N−m)
k variables from equations (16).

Finally, we recall that in all the previous constructions of coalgebra systems (see for
instance [4]), the Hamiltonians have been written in terms of canonical coordinates coming
from specific symplectic realizations of the algebra A:

Xk = Xk(q1, . . . , qn;p1, . . . , pn; c1, . . . , cr ) k = 1, . . . , l (20)

where ci are the values of the Casimirs of A that define the symplectic manifold on which
the functions (20) close the algebra A. The number n of pairs of canonical variables needed
in order to obtain such a realization depends both on the number of generators l of A and of
its rank r. For r = 1, it turns out that n = 1 and then the cluster variable X

(m)
k would be a

function of just m canonical pairs. However, for higher rank algebras X
(m)
k will depend on the

number nm of canonical coordinates and momenta, and equations (16) will give us the ‘global’
dynamics of the cluster variables encompassing simultaneously nm degrees of freedom,
whose individual time evolution can only be obtained by inverting (if possible) algebraic
equations (20).

3. Explicit solutions of coalgebra systems

3.1. The non-deformed CG system

As a first ‘toy model’ with sl(2) coalgebra symmetry, we will solve the dynamics of the
Calogero–Gaudin system [12–15] by using the approach of the previous section.

Let us consider the sl(2) Poisson coalgebra

{X3, X±} = ±2X± {X+, X−} = X3 (21)

equipped with the primitive coproduct

�(Xi) = Xi ⊗ id + id ⊗ Xi i = 3,± (22)

and with Casimir function:

C = 1
4X2

3 + X+X−. (23)

We consider the Nth coproducts of the generators

X
(N)
i := �(N)(Xi) = Xi ⊗

(N−1)︷ ︸︸ ︷
id ⊗ id ⊗ · · · ⊗ id

+ id ⊗ Xi ⊗
(N−2)︷ ︸︸ ︷

id ⊗ · · · ⊗ id + · · · +

(N−1)︷ ︸︸ ︷
id ⊗ id ⊗ · · · ⊗ id ⊗Xi (24)

and the non-deformed CG system is defined by the Hamiltonian

H(N) := �(N)(C) = C(N) = 1
4

(
X

(N)
3

)2
+ X(N)

+ X
(N)
− . (25)

The integrals of motion for H(N) are, by construction [4], the Nth coproducts of the three
generators X

(N)
i and the mth coproducts of the Casimir

C(m) = 1
4

(
X

(m)
3

)2
+ X(m)

+ X
(m)
− m = 1, . . . , (N − 1) (26)

together with the complementary integrals

C(N−m) = 1
4

(
X

(N−m)
3

)2
+ X(N−m)

+ X
(N−m)
− m = 1, . . . , (N − 1) (27)

leading to the well-known superintegrability of the CG system.
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An essential property of the primitive coproduct (24) is that, by using (9), it can be
expressed in (N − 1) equivalent forms in terms of the cluster variables (10):

X
(N)
i = X

(m)
i + X

(N−m)
i m = 1, . . . , (N − 1). (28)

The time evolution of such cluster variables is given by (16) and reads

Ẋ
(m)

3 = 2
(
X(m)

+ X
(N−m)
− − X

(m)
− X(N−m)

+

)
Ẋ

(m)

+ = X
(m)
3 X(N−m)

+ − X(m)
+ X

(N−m)
3 (29)

Ẋ
(m)

− = −X
(m)
3 X

(N−m)
− + X

(m)
− X

(N−m)
3 .

Now by using the integrals of motion given by the Nth coproducts of the generators

X
(N)
i = X

(m)
i + X

(N−m)
i ≡ δi i = 3,± (30)

the variables X
(N−m)
i can be eliminated and equations (29) are transformed into the linear

system:

Ẋ
(m)

3 = 2
(
X(m)

+ δ− − X
(m)
− δ+

)
Ẋ

(m)

+ = X
(m)
3 δ+ − X(m)

+ δ3 (31)

Ẋ
(m)

− = −X
(m)
3 δ− + X

(m)
− δ3.

The motion for this system can be either hyperbolic or periodic, since the eigenvalues of the
previous system are related to the value of the Nth coproduct of the Casimir in the form

ω = ±2
√

1
4δ2

3 + δ+δ− = ±2
√

C(N). (32)

Note that this result is valid for any ‘size’ m of the cluster variables. Finally, we point out
that equations (31) (and therefore the integration constants) are not independent, since they
are constrained by the m-cluster Casimir (26).

3.2. Dynamics of the q-Calogero–Gaudin system

The ‘standard’ q-deformation of sl(2) is given by the Poisson brackets

{X3, X±} = ±2X± {X+, X−} = sinh(zX3)

z
(33)

equipped with the q-deformed coproduct (q = ez)

�(X3) = X3 ⊗ id + id ⊗ X3
(34)

�(X±) = e− z
2 X3 ⊗ X± + X± ⊗ e

z
2 X3 .

The q-deformed Casimir function reads

Cz = 1

4

{
sinh

(
z
2X3

)
z/2

}2

+ X+X−. (35)

The Nth coproduct �(N)(X3) is just of type (24). For the X± generators, we have

�(N)(X±) = X± ⊗
(N−1)︷ ︸︸ ︷

e
z
2 X3 ⊗ e

z
2 X3 ⊗ · · · ⊗ e

z
2 X3 + e− z

2 X3 ⊗ X± ⊗
(N−2)︷ ︸︸ ︷

e
z
2 X3 ⊗ · · · ⊗ e

z
2 X3 + . . .

+

(N−1)︷ ︸︸ ︷
e− z

2 X3 ⊗ e− z
2 X3 ⊗ · · · ⊗ e− z

2 X3 ⊗X±. (36)
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Equivalently, this expression can be written from (5) as

�(N)(X±) = �(m)(X±) ⊗ e
z
2 �(N−m)(X3) + e− z

2 �(m)(X3) ⊗ �(N−m)(X±) (37)

where m = 1, . . . , (N − 1). By writing such Nth deformed coproducts as X
(N)
i := �(N)(Xi),

the q-deformed CG system is defined by the Hamiltonian

H(N)
z := C(N)

z = 1

4

{
sinh

(
z
2X

(N)
3

)
z/2

}2

+ X(N)
+ X

(N)
− . (38)

The integrals of motion for H(N) are again X
(N)
i (i = 3,±) and the sets C(m)

z and C(N−m)
z with

m = 1, . . . , (N − 1).

3.2.1. Evolution equations for the cluster variables. Now we can rewrite the Nth
coproduct (37) in terms of the cluster variables X

(m)
i

X
(N)
3 = X

(m)
3 + X

(N−m)
3

(39)
X

(N)
± = e− z

2 X
(m)
3 X

(N−m)
± + X

(m)
± e

z
2 X

(N−m)
3 .

However, it turns out to be convenient to introduce a new basis for the slq(2) algebra, namely

S3 = X3 S± = e−zX3/2X±. (40)

In this new basis the Poisson brackets read

{S3, S±} = ±2S± {S+, S−} = sinh(zS3)

z
e−zS3 + 2zS+S− (41)

the q-deformed coproduct is

�(S3) = S3 ⊗ id + id ⊗ S3
(42)

�(S±) = e−zS3 ⊗ S± + S± ⊗ id

and the deformed Casimir reads

Cz = 1

4

{
sinh

(
z
2S3

)
z/2

}2

+ S+S−ezS3 . (43)

We remark that in the quantum mechanical case, the basis (40) is suitable in order to compute
analytically the spectrum of some slq(2) operators (see, for instance, [16–17]).

In terms of the Nth deformed coproducts

S
(N)
i := �(N)(Si) (44)

the q-analogue (38) of the CG system is defined by the Hamiltonian

H(N)
z := C(N)

z = 1

4

{
sinh

(
z
2S

(N)
3

)
z/2

}2

+ S(N)
+ S

(N)
− ezS

(N)
3 . (45)

The integrals of motion for H(N) are again S
(N)
i (i = 3,±) together with C(m)

z and
C(N−m)

z (m = 1, . . . , N − 1). The new expressions for the Nth coproduct in terms of the

cluster variables S
(m)
i are

S
(N)
3 = S

(m)
3 + S

(N−m)
3 S

(N)
± = e−zS

(m)
3 S

(N−m)
± + S

(m)
± . (46)

The set of 3(N − 1) coupled nonlinear evolution equations

Ṡ
(m)

i = {
S

(m)
i , H (N)

}
m = 1, . . . , (N − 1) i = 3,± (47)
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can be splitted into (N − 1) copies of the following set of three equations:

Ṡ
(m)

3 = 2
(
S(m)

+ δ− − S
(m)
− δ+

)
ezδ3

Ṡ
(m)

+ = 2zδ−ezδ3S(m)
+

(
δ+ − S(m)

+

) − sinh(zδ3)

z
S(m)

+ + δ+ ezδ3
1 − e−2zS

(m)
3

z
(48)

Ṡ
(m)

− = −2zδ+ezδ3S
(m)
− (δ− − S

(m)
− ) +

sinh(zδ3)

z
S

(m)
− − δ− ezδ3

1 − e−2zS
(m)
3

z

where in order to eliminate the S
(N−m)
i variables, we have used the δi ≡ S

(N)
i constants of

motion given by

δ3 = S
(m)
3 + S

(N−m)
3 δ± = e−zS

(m)
3 S

(N−m)
± + S

(m)
± . (49)

Note that the limit z → 0 of equations (48) reproduces the CG dynamics (29) and that we have
again a constraint between the cluster variables coming from the constant of motion given by
the mth deformed Casimir

C(m)
z = 1

4

{
sinh

(
z
2S

(m)
3

)
z/2

}2

+ S(m)
+ S

(m)
− ezS

(m)
3 . (50)

Thus, once again the collective variables given by the coproduct give rise to a ‘separable’
deformed motion for each cluster. We also stress that such cluster dynamics is a typical
mean-field dynamics: the evolution equations are the same for any m and the effect of the
remaining degrees of freedom is hidden in the constants δi given by the Nth coproducts of the
generators. In a certain sense, each mth cluster moves within the mean-field generated
by the others. This feature can be interpreted as the q-analogue of the fact that, at a
quantum mechanical level, the mean-field approximation for the Gaudin Hamiltonian is
exact.

3.2.2. Explicit solution. In order to solve the cluster equations (48), let us perform the
following change of variables:

S̃± = S
(m)
± δ∓ (51)

S̃3 = exp
(−2zS

(m)
3

)
. (52)

We obtain the new equations:

˙̃S± = ∓a(S̃±)2 ± bS̃± ± c(1 − S̃3) (53)
˙̃S3 = −2aS̃3(S̃+ − S̃−) (54)

where we have introduced the following constants:

a = 2z exp(zδ3) (55)

b = 2zδ−δ+ exp(zδ3) − sinh(zδ3)

z
(56)

c = δ+δ− ezδ3

z
. (57)

Summing and subtracting the above equations we get, respectively,

˙̃S+ + ˙̃S− = −a(S̃+ − S̃−)

(
S̃+ + S̃− − b

a

)
(58)

˙̃S+ − ˙̃S− = −a
(
S̃2

+ + S̃2
−
)

+ b
(
S̃+ + S̃−

)
+ 2c(1 − S̃3). (59)
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Thus we have
˙̃S3

S̃3
= −2a(S̃+ − S̃−) = 2

˙̃S+ + ˙̃S−
S̃+ + S̃− − b

a

(60)

which implies

S̃3 = km

(
S̃+ + S̃− − b

a

)2

(61)

where the number km is the integration constant that can be expressed in terms of the values
of the mth cluster Casimirs as follows:

k−1
m =

(
C(m)

z − e−zδ3C(N−m)
z +

1 − e−zδ3

2z2

)2

. (62)

Now it is natural to introduce

Y+ = S̃+ + S̃− − b

a
Y− = S̃+ − S̃− (63)

entailing

Ẏ + = −aY−Y+ (64)

Ẏ− = −a

2

[(
1 + 4

ckm

a

)
Y 2

+ + Y 2
−

]
+

b2 + 4ac

2a
. (65)

Setting

Z+ = a

(b2 + 4ac)

(
1 + 4

ckm

a

)1/2

Y+ (66)

Z− = a

(b2 + 4ac)
Y− (67)

we obtain the evolution equations

Ż+ = −�Z+Z− (68)

Ż− = −1

2
�

(
Z2

+ + Z2
− − 1

�

)
. (69)

By putting � = (b2 + 4ac), the following equations are obtained:

Ż+ ± Ż− = ∓�

2

(
(Z+ ± Z−)2 − 1

�

)
(70)

whose solution reads

Z+ ± Z− = ± 1√
�

tanh

(√
�

2

(
t − t

(m)
±

))
. (71)

Note that √
�

2
=

√
C

(N)
z + z2

(
C

(N)
z

)2
(72)

and the limit z → 0 of this expression gives the non-deformed period
√

C(N). Two remarks
are here in order: first, on a given energy surface belonging to the open subset of the phase
space 0 > C(N)

z > −z−2, all the orbits are periodic with the same period; second, the nature
of the deformed dynamics turns out to depend explicitly on the value of z.
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3.3. A Gaudin system on a q-Poincaré algebra

We now consider the Poisson analogue of the (non-coboundary) quantum deformation of the
(1 + 1) Poincaré algebra P(1, 1) in terms of ‘light-cone’ coordinates:

{X3, X±} = ±2X± {X+, X−} = 0. (73)

The deformed coproduct is (see [2] with X3 = 2K and X± = H ± P )

�(X3) = X3 ⊗ id + id ⊗ X3
(74)

�(X±) = e− z
2 X3 ⊗ X± + X± ⊗ e

z
2 X3

that, in spite of the non-triviality of the deformation, is still compatible with the non-deformed
brackets (73). This deformation is isomorphic to the one first introduced in [18]. The known
Casimir function for P(1, 1) (and, consequently, for this deformation) is

Cz = X+X−. (75)

Again, we shall make use of the new basis

S3 = X3 S± = e−zX3/2X± (76)

for which the P(1, 1) Poisson brackets read

{S3, S±} = ±2S± {S+, S−} = 2zS+S− (77)

and the q-deformed coproduct is (42). The deformed Casimir function is

Cz = S+S− ezS3 . (78)

We will consider again the ‘q-Gaudin’ Hamiltonian given by the Nth coproduct of the
deformed Casimir

H(N) = S(N)
+ S

(N)
− ezS

(N)
3 . (79)

The associated dynamics is given by (47), and by using the constants of motion provided by
the Nth coproducts

δ3 = S
(m)
3 + S

(N−m)
3 δ± = exp

(−zS
(m)
3

)
S

(N−m)
± + S

(m)
± (80)

the evolution equations are splitted into (N − 1) copies (m = 1, . . . , (N − 1)) of the set:

Ṡ
(m)

3 = 2
(
S(m)

+ δ− − S
(m)
− δ+

)
ezδ3

Ṡ
(m)

+ = 2zδ− ezδ3S(m)
+

(
δ+ − S(m)

+

)
(81)

Ṡ
(m)

− = −2zδ+ ezδ3S
(m)
− (δ− − S

(m)
− ).

In the limit z → 0 these equations reproduce

Ẋ
(m)

3 = 2
(
X(m)

+ δ− − X
(m)
− δ+

)
Ẋ

(m)

+ = Ẋ
(m)

− = 0 (82)

which leads to the (trivial) dynamics for the non-deformed Poincaré–Gaudin system.

3.3.1. Solutions for the cluster equations. The system (81) can be solved on the very same
footing as the qCG system. The variables (52) now obey the simpler equations:

˙̃S± = ∓a(S̃±)2 ± bS̃± (83)

˙̃S3 = −2aS̃3(S̃+ − S̃−) (84)

where

a = 2z exp(zδ3) (85)

b = 2zδ−δ+ exp(zδ3) = δ−δ+a = 2zC(N)
z . (86)
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The evolution equation for S̃± can be immediately integrated, yielding the ‘kink-shape’
solution:

S̃± = b

2a

[
1 + tanh

(
∓b

2
t − φ

(m)
±

)]
. (87)

Consequently, S3 has the following time behaviour:

S
(m)
3 = −(z−1 log[(cosh(bt + φ+ − φ−) + cosh(φ+ + φ−))/2 − cosh(φ+) cosh(φ−)] (88)

which reduces to a linear function of t in the limit z → 0. Note that one could add again a
constant (depending on m) to the solution; such a constant has to vanish in the limit z → 0.
Recall that the constants of motion given by the cluster Casimirs

C(m)
z = S(m)

+ S
(m)
− ezS

(m)
3 and C(N−m)

z = S(N−m)
+ S

(N−m)
− ezS

(N−m)
3 (89)

will also be related to the remaining integration constants.

3.4. A q-Ruijsenaars–Schneider system

We consider again the Pz(1 + 1) algebra and the following Hamiltonian which under a specific
symplectic realization [2] resembles the Ruijsenaars–Schneider system [19]:

H(N) = X(N)
+ + X

(N)
− = (

S(N)
+ + S

(N)
−

)
ezS

(N)
3 /2. (90)

This Hamiltonian Poisson commutes with the N Casimirs

C(m) = S(m)
+ S

(m)
− ezS

(m)
3 m = 1, . . . , N. (91)

On the other hand, since
{
X

(N)
+ , X

(N)
−

} = 0, we have two additional constants of motion (the
Nth Casimir is just the product of them) given by

δ± = X
(N)
± = ezS

(N)
3 /2S

(N)
± = e−z(S

(m)
3 −S

(N−m)
3 )/2S

(N−m)
± + S

(m)
± ez(S

(m)
3 +S

(N−m)
3 )/2. (92)

Moreover, note that δ+ + δ− = H(N). By using such constants we get the following sets of
separated equations for the cluster variables S

(m)
i :

Ṡ
(m)

3 = 2
(
S(m)

+ − S
(m)
−

)
ezS

(N)
3 /2

Ṡ
(m)

+ = zS(m)
+

(
(δ+ + δ−) − 2S(m)

+ ezS
(N)
3 /2

)
(93)

Ṡ
(m)

− = −zS
(m)
−

(
(δ+ + δ−) − 2S

(m)
− ezS

(N)
3 /2

)
.

Since it is immediate to check that

Ṡ
(N)

3 = 2(δ+ − δ−) −→ S
(N)
3 = 2(δ+ − δ−)t + β (94)

through the change of variables

Y
(m)
± = S

(m)
± ez{(δ+−δ−)t+β} (95)

we get the explicit solution for the variables Y
(m)
± :

Y
(m)
± = δ±

2

{
1 + tanh

( ± zδ±
(
t − tm±

))}
(96)

which is again ‘kink-shape’. Note that, when compared with (87), the exponential term (95)
for the S

(m)
± variables and the linear motion for S

(N)
3 (94) are the only dynamical differences

between both systems, both of them due to the fact that the Hamiltonian (93) does not commute
with S

(N)
3 .
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4. Poisson–Lie dynamics on a solvable group

The definition of all the cluster variables for the previous systems is always based on the same
type of deformed coproduct (namely (46) and its S-basis form (42)), although each particular
dynamics is specialized by a given Poisson structure and Hamiltonian. As we shall see in
what follows, this observation can be rephrased in group theoretical terms by considering
such coproduct as the group law for a given solvable Lie group. Namely, let us consider the
following element gz of a three-dimensional Lie group Gz:

gz =

 e−zA 0 C

0 e−zA B

0 0 1


 . (97)

The group parameters are A,B and C (z is a real constant). It is straightforward to compute
the Lie algebra generators associated with A,B and C which are, respectively,

D =

−z 0 0

0 −z 0
0 0 0


 P1 =


0 0 0

0 0 1
0 0 0


 P2 =


0 0 1

0 0 0
0 0 0


 . (98)

These generators close the following three-dimensional solvable Lie algebra:

[D,P1] = −zP1 [D,P2] = −zP2 [P1, P2] = 0 (99)

that contains a dilation D together with two Euclidean translations P1 and P2. Obviously,
when z �= 0 such a parameter can be reabsorbed through the automorphism D → D/z. On
the other hand, the z → 0 limit of Gz is the three-dimensional Abelian group (see [20–22] for
the general connection between quantum algebras and dual Poisson–Lie groups).

A natural coalgebra structure on Fun(Gz) is defined through the coproduct given by the
matrix multiplication on a representation on the group

�(gz) := gz ⊗̇ gz. (100)

From the representation (97) such a coproduct takes the following values on the group entries:

�(1) = 1 ⊗ 1

�( e−zA) = e−zA ⊗ e−zA

�(B) = e−zA ⊗ B + B ⊗ 1

�(C) = e−zA ⊗ C + C ⊗ 1.

(101)

Note that the second expression is equivalent to the fact that

�(A) = 1 ⊗ A + A ⊗ 1. (102)

Therefore, under the identification

A ≡ S3 B ≡ S+ C ≡ S− (103)

the coproduct (42) is just (101). Therefore, all the Nth coalgebra systems described above
are defined on N tensor copies of different Poisson algebras of (smooth) functions on Gz.
In general, any Poisson structure on Fun(Gz) for which the group multiplication (101) is a
Poisson map endows Fun(Gz) with the structure of a Poisson–Lie group (see, for instance,
[23, 24] and references therein). Hence, all the previous results can be interpreted as examples
of PL dynamics on Fun(Gz).
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4.1. The PL slq(2) dynamics

Through (103), the slq(2) Poisson coalgebra (41) can be identified as a Poisson–Lie structure
on Fun(Gz) with the following Poisson brackets

{A,B} = 2B {A,C} = −2C {B,C} = 1 − e−2zA

z
+ 2zBC (104)

coproduct (101) and Casimir function (43)

Iz = 1

4

(
sinh zA/2

z/2

)2

+ BC ezA. (105)

From this perspective, the q-CG system is just obtained when we consider the evolution under
the particular Hamiltonian H(N) = �(N)(Iz). Note that the non-deformed CG system is
obtained in the limit z → 0, which corresponds to the three-dimensional Abelian group G0

where the additive group law for the parameters is just the primitive coproduct (22).

4.2. The PL q-Euclidean dynamics

In the same way, the Poisson Pz(1+1) algebra (77) can be thought of as a different Poisson–Lie
structure on Fun(Gz) endowed with the Poisson brackets:

{A,B} = 2B {A,C} = −2C {B,C} = 2zBC. (106)

The Casimir function is the analogue of (78):

Iz = BC ezA. (107)

Now, the q-Gaudin system on the Poincaré algebra is defined by the Hamiltonian

H(N) = �(N)(BC ezA) (108)

whilst the Hamiltonian for the q-Ruijsenaars–Schneider system is

H(N) = �(N)((B + C) ezA/2). (109)

We stress that both systems are defined with respect to the same PL bracket (106).

4.3. PL slκq (2) dynamics and contractions

From this PL point of view it would be natural to explore the dynamics induced from other
Poisson–Lie structures on Gz and to exploit the PL structure in order to extract more dynamical
information. For instance, we could realize that (104) and (106) can be simultaneously written
as a one-parameter family of PL brackets:

{A,B} = 2B {A,C} = −2C {B,C} = κ
1 − e−2zA

z
+ 2zBC (110)

where the parameter κ � 0 can be interpreted as a contraction parameter: if κ = 1 we have the
slq(2) structure and the limit κ → 0 leads to the q-Poincaré one. Note that (110) is compatible
with the group coproduct (101) for any value of κ . The Casimir function for this more general
bracket is

I κ
z = κ

4

(
sinh zA/2

z/2

)2

+ BC ezA. (111)

It is easy to check that equations for the cluster variables (81) of the q-Gaudin–Poincaré system
are just the κ → 0 contraction of the q-CG equations (48), provided the latter system is defined
by using the Poisson algebra slκq (2) (110) instead of the slq(2) one (104).
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Finally we remark that, since the Poisson structure (110) is quadratic in terms of the
entries of gz (note that the number 1 is one of such entries), it is possible to rewrite (110) in
the form

{Gz ⊗ Gz} = [r,Gz ⊗̇ Gz] (112)

where r is a 9 × 9 constant classical r-matrix. We also recall that, in general, a suitable
quantization of Poisson–Lie groups gives rise to quantum groups, and some quantum versions
of different PL brackets on the group Gz were already given in [20].
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